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A rapidly varied flow phenomenon in a two-layer flow 
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This paper examines a region of rapidly varied flow in a two-layered density 
stratified system with one layer flowing, and the other stationary. The analogous 
phenomenon in open channel hydraulics is the hydraulic jump. In density 
stratified flows the phenomenon is referred to as a density jump because it is 
generally accompanied by a change in density of the flowing layer. 

It is shown there is a fundamental difference between the hydraulic jump and 
the density jump in that flow conditions on either side of a density jump are 
not uniquely related. A density jump with given flow conditions upstream has 
a range of possible states which may be attained downstream. The rate of en- 
trainment of ambient fluid into a density jump, and the conditions downstream 
of the jump, are determined by the downstream control and the upsteam con- 
ditions. The particular case of a density jump controlled by a broad crested weir 
downstream is examined in detail. 

1. Introduction 
This paper examines the characteristics of a hydraulic jump associated with 

some form of downstream control in a two-layer system. The fluids are of dif- 
ferent densities and are miscible, so that mixing of the two layers may occur in 
the turbulent region of the jump. Since such mixing will result in a change in 
density of the flowing layer, the region of rapidly varied flow will be referred to 
as a density jump. The mixing region or entrainment zone of a density jump, 
has been studied experimentally by Ellison & Turner (1959). 

The special case of a density jump occurring without mixing has been ex- 
amined by Yih & Guha (1955). Their analysis showed that if both layers are 
flowing, up to four mutually conjugate downstream states are possible for a 
given upstream state. A unique solution is obtained when the downstream control 
is incorporated into the analysis. 

Density jumps occur when a fluid is discharged from an outlet under a 
horizontal boundary into a fluid of greater density (figure 1, plate 1) or over a 
horizontal boundary in a fluid of lesser density. A situation similar to the former 
case exists when heated cooling water is discharged from a power station onto 
the surface of a, cooling pond. Density jumps have also been observed in the 
atmosphere; Schweitzer (1953) observed the phenomena in Fohn winds, and 
Ball (1959) and Lied (1964) noted their occurrence in katabatic winds in 
Antarctica. Lied gives a particularly vivid account of his experience of walking 
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through one of these jumps. In  one instance a pressure change of nearly 20mb 
was measured across the density jump, a distance of some 60 yards. However, 
pressure changes of 2-3 mb were more usual. 

2. The mechanics of a density jump 
Density jumps are similar in many ways to open channel hydraulic jumps. 

They are both transitions from a supercritical to a subcritical flow rhgime. 
However, there are several points of difference between the two phenomena. 
One of these is the ability of the density jump to entrain the varying amounts of 
ambient fluid necessary to satisfy a range of possible downstream controls. This 
characteristic of a density jump can be seen by comparing figures 1 and 2 

1 p o  Ambient fluid 

(2) 

f 

Density 
current - 

(plate l),  where photographs of density jumps with identical upstream states 
are shown but where each jump has a different downstream control. The dif- 
ference in the jump shape is apparent. 

It is necessary to examine the mechanism of a density jump in some detail 
before the interaction between a density jump and its control can be fully 
appreciated. 

A density jump, in general, can be divided into two distinct zones; an entrain- 
ment zone and a roller region. Nearly all the entrainment which occurs at  the 
jump takes place in the entrainment zone. These two zones are shown schematic- 
ally in figure 3. 

The region of entrainment and mixing occurs at the upstream end of a density 
jump and the entrainment mechanism in this zone is similar to that of a neutral 
wall jet. The length of the entrainment zone is determined by the downstream 
control. The presence of a control such as a channel contraction or a weir, as 
shown in figure 4, will cause a roller region to form at the downstream end of 
the jump. The roller region is characterized by a flow near the interface in the 
reverse direction to the main flow. This roller is similar in appearance to  the 
roller associated with an open channel hydraulic jump and responds in a similar 
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manner to a hydraulic jump if the height of a control weir downstream is adjusted. 
If the weir height (h) in figure 4 were increased, the roller region would extend 
further upstream and reduce the length of the entrainment zone. In  experiments, 
the entrainment process was made visible by injecting dye patches into the 
ambient fluid in the vicinity of a density jump. It was observed that nearly all 
entrainment occurred in the entraining zone and that there is virtually no en- 
trainment in the roller region of the density jump. It is apparent, therefore, that 
increasing the weir height will cause a decrease in the entrained flow at the density 
jump and hence the flow in the layer downstream of the jump will be reduced. The 

I$ 
Broad crested weir 

FIGURE 4. Density jump controlled by a broad-crested weir. 

velocities in the region of reverse flow were far less than those in the entraining 
zone of the density jump. As a result, the interfacial shear is low in the roller 
region and the density difference between the two fluids is sufficient to inhibit 
turbulence and entrainment. 

If the weir height is further increased, a point can be reached where the roller 
region extends the full length of the jump and entrainment effectively ceases. 
Such a jump will be referred to as a ‘non-entraining jump ’. Purther increase in 
the weir height at this stage will cause the jump to flood so that the upstream 
end of the jump becomes submerged in dense fluid. There is no entrainment into 
a flooded jump. A photograph of a flooded jump is shown in figure 5 (plate I). 

If a controlling weir downstream of a density jump is lowered, the roller 
region can be observed to migrate downstream. This causes the entrainment 
zone to lengthen, and entrainment to increase, so that the flow in the layer down- 
stream of the jump is also increased. A limit is reached when the entrainment 
zone occupies the entire length of the density jump, which is then of the maximum 
entraining type with no roller region. Such a density jump is shown in figure 1 
(plate 1). 

14-2 
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3. Analysis 
The roller region, which is controlled by the downstream weir, affects the 

properties of the fluid flowing downstream of the jump and over the weir. The 
problem then is to predict the properties of the fluid between the jump and the 
weir (section ( 2 ) ,  figure 4) given the properties of the inflowing fluid (the velocity, 
depth and density excess at section (l), figure 4) and the height of the weir 
(section (3), figure 4). 

The method of solution makes use of the fact that the flow at all depths within 
the layer at sections (l), (2) and (3) is horizontal and hence the pressures are 
hydrostatic. It assumes that friction on the bed surface is negligible, the density 
excess values are small, and that there is no entrainment between sections ( 2 )  
and (3). Use is then made of the equation of continuity of density excess and the 
balance of hydrostatic pressure forces and fluid momentum (this being termed 
the flow force by Benjamin (1962)), between sections ( 1 )  and (2). The equation of 
continuity and the equation for the flux of energy is used between sections (2) 
and (3). Finally it is necessary to use the fact that at the crest of the weir the 
flow is critical (Henderson 1966, pp. 40-44). 

Let the density of the fluid at any point be po + Ap where po is the density of 
the ambient fluid and Ap is the density excess. Let u be the horizontal velocity 
and y the distance measured above the horizontal bed. Let D, the depth of the 
ambient fluid, be very much greater than the depth of the flowing layer, Y .  

Let the flux of mass per unit span, the flow force per unit span and the energy 
flux per unit span be respectively, qm, qF and qE. Then 

&@ = I / D ( p o +  Ap) g u d y  
Po Po 0 

= gjoDu d y  +ID k g u  d y  
0 Po 

= gqv + q A ,  (1) 

where the subscripts v and A refer respectively to the volume flux per unit span 
and to the flux of density excess times gravity per unit span. Since the flow is 
steady qm, qu and qA must be constant at all sections. At the sections being con- 
sidered the flow a t  all depths is horizontal and hence the pressures are hydrostatic. 
It follows that the flow force is given by 

For the case where the datum from which the energy is measured is h below 
the bed, the energy flux is given by 
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Further let the volume flow in the layer alone be 

f Y  

245 

where y = Y is the position of zero horizontal velocity. It is important to note 
that qL will differ from qv by the induced flow in the ambient fluid. Although the 
induced flow may be of the order of qL, because of the large depth in the ambient 
fluid, all the velocities outside the flowing layer are very small. 

It is now proposed to assume that at all points A p  < po and then to use the 
normal Boussinesq approximation. This implies that the density may be assumed 
constant and equal to po in all terms except the body force terms. If now the 
characteristic depth, velocity and density excess times gravity are defined by Y ,  
qL/Y and q A / q L  then substituting these values into (3) and assuming that outside 
the flowing layer the integrals such as 

tend to very small values we get 

and a layer Froude number as 

= (&/!?A y3)', 

equation (4) can be written as 

I t  is worth noting in (5) that S,  and S,  are measures of the non-uniformity of 
the velocity and density distributions respectively. If velocity and density 
throughout the layer depth Y are constant then S, and S, equal one. 

Assuming velocities in the ambient fluid are sufficiently small for the free 
surface to be horizontal, i.e. D is a constant, then the above equation has the 
same value at sections ( 1 )  and ( 2 ) .  Hence one finds 

where the bracket subscript refers to the particular section and q21 is the ratio 
of the layer flows at sections ( 2 )  and (1). 
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In a similar manner the energy flux at  any section can be written 

where 

(7) 

Again SE and AS, are measures of the non-uniformity of the velocity and density 
distributions respectively. Since there is no entrainment between sections (2) 
and (3) and if it is assumed that the energy flux is constant, then the terms on the 
left-hand side of the equation are the same a t  each section.Purther Y2/& = at/$'!. 
Hence from (7) one can show 

Following the normal open channel flow theory (Henderson 1966), and dif- 
ferentiating (7 )  with respect to x and assuming that 8, and S, are constant in the 
region between (2) and (3)) one finds at  section (3) where dh/dx = 0, 

I(F2SE-Sp)dY/dxI, = 0. 

Since d Yjdz is finite at this section it follows 

F; = SplS,, 

and (8) becomes 5 = 1 (s$J/sH)B (F2SE + " 2 3 )  - 3F3x, 
y3 2P3 I 2 9  

but from the definition of the Froude number one obtains 

Substituting for 4 and noting the between sections (2) and (3) there is no en- 
trainment and that q2 = q3 one gets 

y3 = YiqziIG S E p  1 ' - 
1 

Thus from (9) 

Further substituting for q21 from (6) one obtains 

where 

and is a function of upstream conditions onIy. 
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For a density jump controlled by a broad crested weir of known height, con- 
ditions downstream of the jump can be predicted from (12), provided upstream 
conditions are known. Equation (12) is plotted in figure 6 for the idealized case 
where the density and velocity are constant within the layer downstream of the 
density jump. Several interesting points arise from examination of this figure. 
(a) When the weir is of zero height, and in the absence of friction or any other 
downstream control, the Froude number downstream of the jump will be unity. 
For this case it can be shown from (6) that qzl is a maximum when Fz = 1 (in 
general qzl is a maximum when F2 = (SH/Sm)$). This implies that the jump is 

0.4 

0.3 

2 
hi . 0.2 
", 

0.1 

0 

FIUURE 6. Plot of weir height against Froude number downstream of a density jump. 
Experimental results: 0, PI = 10.5, h increasing; 0,  F ,  = 16.5, h increasing; 0,  
PI = 16.5, h decroasing. 

of the maximum entraining type. ( b )  There is a maximum value of (h/Yl)f for 
which a solution is possible. Sincefand Yl are determined completely by upstream 
conditions, it follows that if the weir height is raised above this maximum value, 
the jump will flood. (c) It can be seen that for a density jump with set upstream 
conditions, and a given weir height downstream (i.e. f defined), two values of 
Fz satisfy (12). It should be noted, however, that (12) only applies to unflooded 
density jumps, and once flooding occurs a different function relates (h/Y,)fand PZ. 

This new relationship can be determined from (1 1) which equates flow energies 
at sections (2) and (3) in figure 4, and is independent of conditions at the density 
jump. There is no entrainment at a flooded density jump so that qZ1 = 1, and 
substituting into (11) for the idealized case where S,, SH, 8, and S, are unity, 
one has 

(13) 
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Both sides of (13) have been multiplied byf (defined in (12) and constant in 
value for given conditions upstream of a density jump) to enable (13) to be 
plotted on the same figure as (12) (figure 7).  

The interrelation between (12) and (13) is now examined by means of an 
example. Consider first, a density jump, with an upstream Froude number of 3.0, 
controlled by a broad crested weir downstream. The curve for the flooded r6gime 
(13), of such a jump is plotted as the curve X Y in figure 7. The point X represents 
the limiting condition where the roller region occupies the entire length of the 

Flooded jump equation (13) for F,=50 / 

0.3 

0 0 4  0.6 0.8 1-0 

p2 
FIGURE 7. Effect of a weir raising and lowering cycle on a density jump. 

jump, there is no entrainment and further increase in the depth of flow down- 
stream of the jump will result in its flooding. This particular jump is non- 
entraining at  the point X ,  and its downstream Froude number may be calculated 
by substituting 3.0 for F' in (6), to give F, = 0.41. Consider what happens as the 
weir is raised from zero height. Initially, the density jump will be of the maximum 
entraining type and the downstream state is given by the point A in figure 7. 
As the weir is raised h increases in value and it can be seen that F2 decreases from 
its initial value of 1.0 a t  A. The curve AXEBDO is followed until the point X 
is reached. Further increase in h at this point causes flooding of the jump and 
the downstream state is defined by the curve XY (i.e. equation (13)). 

It is apparent that only a limited region of the curve AEBDO will describe 
possible downstream states of a density jump. This region will depend on the 
value of the Froude number upstream of the jump. It will now be shown that no 
stable downstream states exist to the left of B on the curve AEBDO. This region 
is potentially accessible to the density jumps with an upstream Froude number 
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of 13.2 or greater. Density jumps having upstream Froude numbers of less than 
13.2 will flood before the downstream Proude number reaches 0.17, or before the 
point B is attained. It will be shown that for density jumps controlled by a broad 
crested weir Froude numbers of less than 0.17 cannot be attained, irresDective of 
the upstream Froude number. Once such a jump has reached a downstream 
Froude number of 0-17, further increase in weir height results in flooding of the 
density jump, and the resulting phenomenon is no longer considered to be a 
density jump. The physical form of a flooded jump (figure 5, plate 1) is quite 
different to that of a density jump (figures 1 and 2, plate 1). 

The reasons for this limiting characteristic of density jumps controlled by 
broad crested weirs can be best understood by tracing a cycle of weir raising 
and lowering on a plot of (h/Y,)f versus F2. This cycle is shown in figure 7 for a 
density jump having an upstream Froude number of 50. Commencing at a point A 
with a weir of zero height and a maximum entraining density jump, as the weir 
height is increased, the downstream Froude number (F2) decreases in value. 
This process can be continued until the point R is reached. At this stage the 
density jump is still entraining ambient fluid. 

Since no solutions for density jumps exist for values of (h/Y,)f greater than 
that at  B, the smallest increase in weir height at this point results in flooding of 
the jump. A small increase in F, at B results in the jump flooding to a state given 
by C on the curve PCD. This curve is equation (13) plotted for the case where 
PI = 50, and hence from the definition, f = 0.0054. 

This flooded state is quite stable, and it can be seen the inlet is submerged, 
as in figure 5. Lowering of the weir will not cause the density jump to return to 
its former state, given by B in figure 7. For this to happen all of the fluid overlying 
the inlet would have to be swept away. This will not occur as the flow is stable on 
PCD, if small quantities of overlying fluid are removed. The jump therefore 
remains flooded until the point D is reached. 

It is now shown that a non-entraining jump to the left of B (i.e. at D) in figure 7 
is unstable, and a negative disturbance of the weir height downstream will 
result in another dramatic change in the form of the jump. However, before pro- 
ceeding further, it is necessary to examine a further characteristic of the density 
jump. 

It was stated earlier that the non-entraining roller region of a density jump 
is analogous to the open channel hydraulic jump. If a control weir downstream of 
a hydraulic jump is lowered, the jump moves downstream until some new 
equilibrium is established. The roller region of a density jump behaves in an 
identical manner. When a roller region migrates downstream an increased length 
of entraining zone is exposed, so that the total entrainment is increased. The 
flow downstream of a density jump is therefore increased until equilibrium is 
restored. 

It is now shown that this downstream migration of the roller region results 
in an increase in the Froude number downstream of a density jump. Let FT denote 
the transitional Froude number a t  the junction of the roller region and the en- 
trainment zone (section T-T in figure 3). A range of possible 3'' values are avail- 
able in any density jump between the limits B!! = B!! a t  the upstream end of 
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the jump, and FT = 1.0 in the idealized case of maximum entrainment. I f  the 
roller region moves downstream, it follows FT must decrease in value. It has been 
stated the roller region is a non-entraining stationary surge, so that it may be 
analyzed in a similar manner to the open channel hydraulic jump. If it is assumed 
that velocity profiles either side of the roller region are reasonably uniform, and 
that the velocities are horizontal, then the equation of Bakhmeteff (1832, 
pp. 240-1) for hydraulic jumps will hold 

F2 = FT 
{&[(SF$ + 1)3- 1]}+' 

Return now to figure 7 and examine the non-entraining jump a t  D. This is the 
transition point between a density jump and flooded jump. If the weir height is 

Unstable Stable 

0.4 > 2=0,17 

FL=O 
I I I I I 

a 0.2 0.4 0.6 -A 0.8 1 .o 
yz  (flYJ 

FIGURE 8. Weir height versus depth downstream of a density jump. 

lowered slightly, the roller region moves slightly downstream, entrainment 
commences, PT decreases and it can be shown from (14) that F2 increases in 
value. It is apparent, however, that if F2is to increase in value, a new equilibrium 
cannot be attained until the point E is reached. Thus the non-entraining state of 
the jump at D is unstable, and a disturbance to the flow will result in a sudden 
change in the form of the jump. The flow will suddenly change to a density jump 
(i.e. jump in which the density changes) and there will be a rapid increase in the 
Froude number downstream of the jump. 

A n  intriguing relationship exists between the depth of flow downstream of the 
density jump (section (2) in figure 4) and the height of the broad-crested weir. 
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Using the definition of the Froude number and the expression for qZl from (6) 

This relationship, together with equation (12) ,  enables us to eliminate F2 and 
hence obtain a relationship between and Y2 in terms of the upstream conditions. 
This relationship is plotted on figure 8. 

Starting with a weir of zero height and a maximum entraining density jump 
at A ,  the depth downstream of the jump yZ increases as the weir height (h) is 
increased. Once, however, the point €3 is reached Yz has attained its maximum 
value. Beyond this point raising of the weir forces the roller upstream and causes 
such a decrease in discharge, and an increase in the density at section (2 ) ,  that 
the depth upstream of the weir actually falls. This depth will continue to decrease 
until the point C is reached where it can be shown F' = 0.17. This point corre- 
sponds to  B in figure 7 and if h is increased beyond this value the density jump 
will flood. 

The depth weir height relationship downstream of a density jump controlled 
by a broad-crested weir is quite novel; an increase in the weir height can result 
in a decrease in the depth of flow upstream of that weir. 

4. Experimental results 
Experiments were performed in the tank shown schematically in figure 9. 

Thermal density currents were used in experiments, the warm layer flowing over 
the cooler ambient layer as shown in the figure below. The dimensions of the 

Hot water intlow 

Overflow to 

waste 

.uniform flow T 
3 ft 6 in. 

Ambient fluid 

FIGURE 9. Schematic diagram of the test  tank. 

working section of the tank were 8 ft long by 6-1 inches wide by 3 ft 6 in. deep. The 
sides were of tin, thick perspex so that heat transfer across the boundaries 
was negligible. Steady-state flows could be maintained indefinitely. Temperatures 
were measured using calibrated thermocouples and velocities were measured 
using a hydrogen bubble technique. 

Mean values of the characteristic density difference and the integral flow force 
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and energy terms, LYm, X,, X, and A,, could be determined to an accuracy of 5 yo 
or better, from these measurements. 

Data from experiments with density jumps, controlled by broad-crested weirs, 
are plotted in figure 6. The theoretical relationship between the plotted para- 
meters, the dimensionless weir height and the downstream Froude number, is 
also shown in this figure. 

It can be seen that agreement between the theory and experiment is satis- 
factory. It should be noted, however, that the theoretical curve was plotted for 
the ideal case where it was assumed that the velocity and density distributions 
are uniform in the flowing layer. The closeness of the curve and the data indicated 

0 

0.5 
h . 

3 2  

1 .o 

FIGURE 10. Typical velocity and density distributions downstream of a density jump 
(PI = 7.1). (a)  Mean density distribution. ( b )  Mean velocity distribution. - - -, partially 
entraining; -, maximum entraining. 

that the various integral factors compensate. (This conclusion was verified by 
detailed measurement of velocities and densities downstream of the density 

The flooding points of density jumps having upstream Froude numbers of 
10.5 and 16.5 are shown in figure 6. Unfortunately, with the experimental 
apparatus available, upstream Froude numbers greater than 16.5 could not be 
attained. It was not possible therefore to experimentally verify with any certainty 
the stability theory. The density jump having an upstream Froude number of 
16-5 flooded before the non-entraining value of downstream Froude number was 
obtained. However, experimental accuracy was not sufficiently precise to observe 
the small hysteris effect which could be expected at this value of PI. 

jump.) 

4.1. The downstream layer 
Dimensional analysis indicates that any density jump is fully defined by its 
upstream Froude and Reynolds numbers and its downstream Froude number. 
It follows therefore that the velocity and density distributions downstream of a 
jump can also be defined in terms of these three parameters. It was found that 
the Reynolds number effects were minor except close to the solid boundaries. 
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4.2. Velocity distributions 

Typical m a n  velocity distributions measured downstream of a density jump, 
for cases of maximum and little entrainment, are shown in figure 10(b). The 
Froude number upstream of this density jump was 7.1 and the respective down- 
stream Froude numbers were 0.73 and 0.38. The profile of the jump, for each case, 
is shown in figure 11, and the difference in form is apparent. 

Entraining zone 

0.8 - 

I distributions 

0 2 4 6 8 10 12 14 
(b) 

4% 
FIGURE 11. Profiles of density jumps. (a) Maximum entraining; (a) partially entraining. 

Experiments showed that the velocity distribution, downstream of a density 
jump which had a constant upstream state, became more non-uniform as the 
downstream Froude number increased in value, that is as entrainment increased 
and the height of the control weir decreased. It was also found that the down- 
stream velocity distribution was largely independent of the upstream Froude 
number, provided its value exceeded three. 

The non-dimensional momentum term S,, is a function of the velocity dis- 
tribution in the downstream layer and is plotted against the downstream Froude 
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number in figure 12. High values of S,, (which implies a non-uniform velocity 
distribution) are associated with high values of downstream Froude number. The 
value of the upstream momentum term S,, was found to vary from 1-08 to 1.14, 
depending upon the Reynolds number of the flow in the inlet. 

1-4 

1.3 

N 

t.r 
1.2 

1.1 

1 4  

I v 

0 0.2 0.4 0.6 0.8 1 .o 
P2 

FIGURE 12. The integral momentum term versus downstream Froudo number. 
0, Pl = 1-3; 0, Pl = 3-5; +, PI = 5-10; 0 ,  PI > 10. 

4.3. Density distributions 
The density distribution downstream of a density jump is determined by two 
factors: (i) the amount of entrainment; (ii) the length of the roller region (this 
determines the degree of mixing between the entrained fluid and the upstream 
layer). 

For a density jump with given upstream conditions, the downstream density 
distribution will become more non-uniform as the downstream Froude number 
increases in value. This increase in Froude number, which would result from a 
decrease in height of the control weir, causes both an increase in entrainment 
and a reduction in the length of the roller region. An example of this may be seen 
in figure lO(a). 

The density distribution downstream of a density jump with a given down- 
stream control will become more non-uniform if the upstream Froude number is 
increased in value, since entrainment will also increase. 

The non-dimensional pressure force term SH2 is a function of the density 
distribution in the downstream layer. S,, is plotted as a function of upstream 
and downstream Froude numbers in figure 13. Non-uniformity in the density 
distribution causes a reduction in the value of SH2. 
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High values of downstream Froude number are associated with high values of 
entrainment and non-uniform density distributions, so that a,, for such a jump 
tends to be low valued. S,, was found to have a minimum value of approxi- 
mately 0.6. 

The density distribution upstream of density jumps, was uniform in all 
experiments, hence S,, was equal to one. 

1.0 

0.8 
k a 

0.6 

0.4 I I I I I I I 
0 2 4 6 8 10 12 

PI 

FIGURE 13. The integral pressure term as a function of upstream and downstream Froude 
numbers. 0,  F3 = 1.0-0.8; X ,  F,  = 0.8-0.6; 0, F, = 0.6-0.4; 0, F, = 04-0.2. 

5. Conclusions 
It has been shown that for a density jump controlled by a broad-crested weir 

two different values of downstream Froude number satisfy the equation of 
motion. Physical arguments have been used to show that only for the upper 
value of Froude number is the flow state stable. Although the lower value of 
Froude number can be achieved by first flooding the jump and then lowering 
the control weir until the jump becomes non-entraining, a slight decrease in the 
weir height at this point will result in a dramatic change in form of the density 
jump and the flow rate downstream. It was noted that for density jumps with 
downstream Froude numbers of less than 0.5, an increase in the height of the 
control weir caused a decrease in the layer depth upstream of the weir. 

Other forms of control have been investigated (Wilkinson 1970); among these 
being contractions, undershot gates and friction on a sloping bottom. In  all 
the above cases, the Froude number downstream of the density jump is a single- 
valued function of the control parameters and the Froude number upstream of 
the density jump. 

The authors would like to thank the staff of the Water Research Laboratory, 
University of New South Wales, for their aid and encouragement during this 
investigation. 
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FIGURE 1. A density jump of the maximum entraining type with a free overfall down- 
stream. Entrainment is occurriiig along the length of the jump. 

FIGURE 2. A density jump controlled by a broad crested weir downstream. Entrainment 
is occurring only a t  the far upstream ond of tho jump, tho remainder consists of a roller zone. 

FIGURE 6. Photograph of a floodod density jump. Tho inlet flow for this jump is identical 
to that of the jumps shown in figures 1 arid 2. 

(Fac ing  p.  256) 


